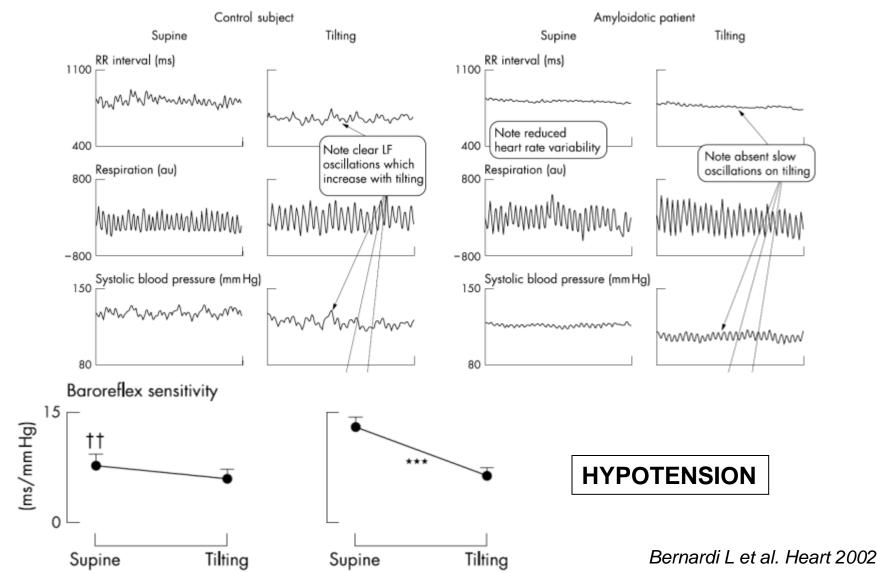
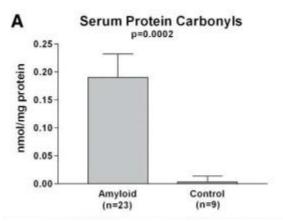


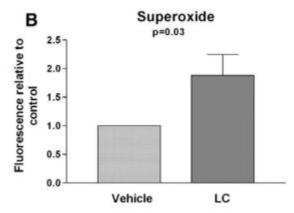
ΑΜΥΛΟΕΙΔΩΣΗ ΚΑΙ ΑΓΓΕΙΑ


ΚΙΜΩΝ ΣΤΑΜΑΤΕΛΟΠΟΥΛΟΣ

ΜΟΝΑΔΑ ΑΓΓΕΙΟΛΟΓΙΑΣ ΚΑΙ ΠΑΘΟΦΥΣΙΟΛΟΓΙΑΣ ΤΟΥ ΕΝΔΟΘΗΛΙΟΥ ΘΕΡΑΠΕΥΤΙΚΗ ΚΛΙΝΙΚΗ ΕΘΝΙΚΟ ΚΑΙ ΚΑΠΟΔΙΣΤΡΙΑΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

Widespread cardiovascular autonomic dysfunction in primary amyloidosis



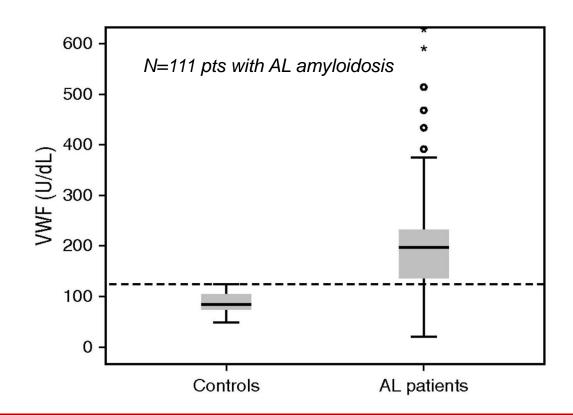

Light chain proteins (LC) induce microvascular oxidative stress

Increased systemic oxidative stress in AL amyloidosis

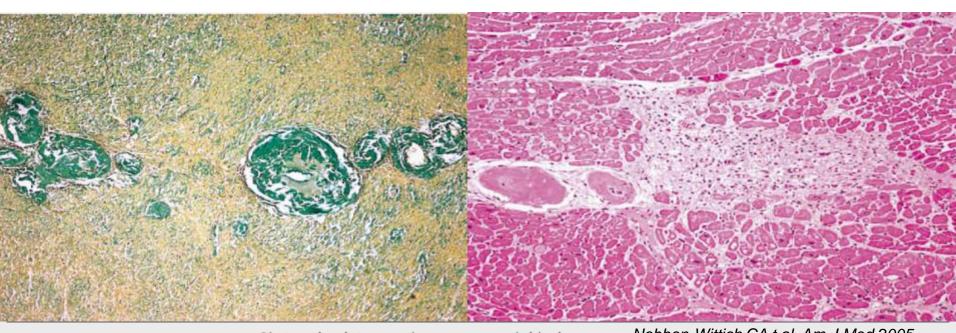


LC induces oxidative stress

LC impairs vasodilatory capacity

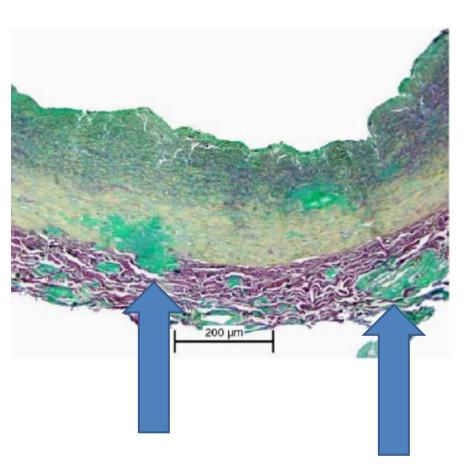


Migrino R et al. Int J Cardiol 2005


Increased systemic endothelial activation in AL amyloidosis

Arterial involvement in AL amyloidosis → accelerated atherosclerosis?

Coronary microvascular involvement and myocardial ischemia are common in primary AL amyloidosis

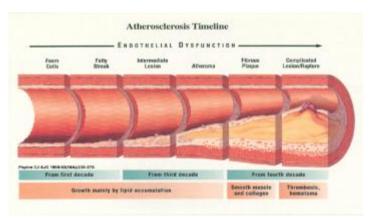


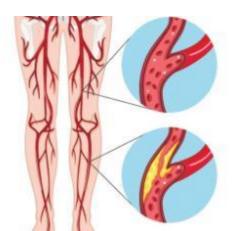
Obstructive	intramural	coronary	amyloidosis
--------------------	------------	----------	-------------

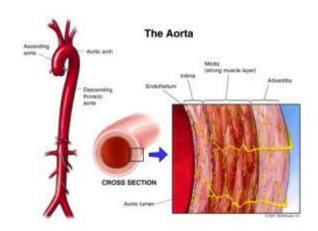
Nebben-Wittich CA t al. Am J Med 2005

Myocardial ischemia	Present	(n = 47)	Absent	Total (r	Total (n = 76)		
Myocardial ischemia	No.	%	No.	%	P value	No.	%
Present	39	83	13	45	<.001	52	68
Chronic only	30	64	11	38	.028	41	54
Acute + chronic	9	19	1	3	.079	10	13
Acute only	0	0	1	3		1	1
Absent	8	17	16	55		24	32

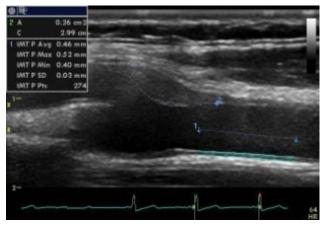
Obstructive coronary epicardial involvement in primary amyloidosis is very rare


- In 56 of 58 patients (97%), amyloid was present in epicardial coronary arteries.
- Amyloid was identified in all artery layers intima, media, and adventitia), and more patients had amyloid in the adventitia.
- Widely affected vasa vasora and in many patients obstructed by amyloid.

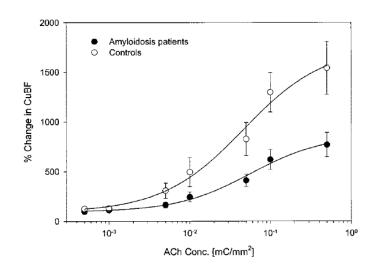

Peripheral artery disease?



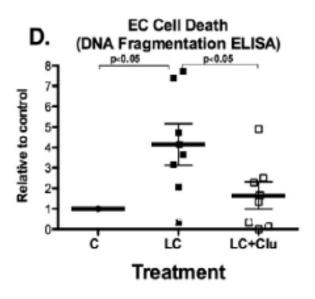
Atherosclerosis



Peripheral Artery Disease



Carotid artery disease


Peripheral microvascular dysfunction and LC induced aortic cell death in AL amyloidosis

Cutaneous endothelial dysfunction

Berghoff M et al. Ann Neurol 2003

Human aortic endothelial cells

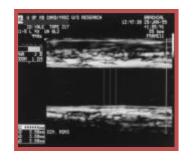
Franco D et al. Atherosclerosis 2012

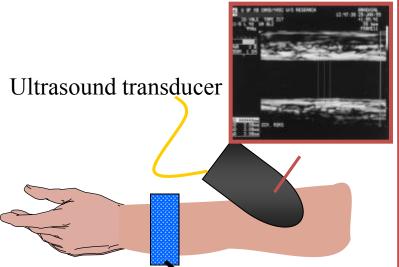
PERIPHERAL CONDUIT ARTERIES

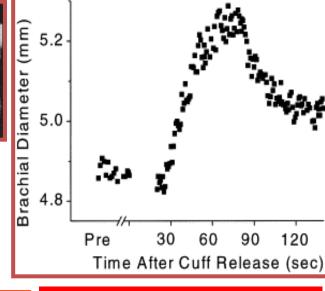
Peripheral conduit arterial function and structure in AL amyloidosis

No differences in obstructive or subclinical peripheral arterial disease

Parameters	AL (n=115)	Matched controls (n=115)	P value
SBP	↓123.7±22.5	132.0±20.9	0.005
DBP	↓72.2±10.2	75.0±10.3	0.041
FMD (%)	↑4.00 (1.92-6.06)	2.32 (0.96-4.55)	0.002
PWVfemoral (m/sec)	9.8 (8.3-12.05)	10.3 (9.2-12.50)	0.179
Augmentation index(%)	↓18.5 (9.0-28)	32 (26.0-39)	<0.001
Carotid IMT (mm)	0.848 (0.752-0.962)	0.813 (0.717-0.933)	0.202
Presence of any carotid plaque, n (%)	57 (49.6%)	63 (54.8%)	0.428
Presence of femoral plaque, n (%)	45 (39.1%)	39(33.9%)	0.238
Presence of any plaque,n(%)	69 (60%)	68 (59.1%)	0.957






Increased FMD in AL amyloidosis is associated with cardiac involvement and severity

	FMD<4.5%	FMD≥4.5%	P
Heart involvement, n(%)	36 (54.5)	37 (75.5)	0.021
hsTnT, nmol/L	33 (17-57.3)	58.5 (41-94)	0.007
NTproBNP, nmole/L	1414(236-3823)	2683 (841-7600)	0.023
Mayo stage (=III), n (%)	12 (18.2)	18 (36.7)	0.033

Flow-mediated dilatation of the brachial artery (FMD)

Baseline measurements

Cuff inflation

3 to 5 min

45-120 sec after

Cuff deflation -Hyperemia

J FMD

Endothelial dysfunction

↑ FMD

- Increased vascular reactivity
- Orthostatic Hypotension

Corretti et al. JACC 2002

个个 non-NO vasodilator bioavailability

- •Hyperpolarizing factor
- Prostaglandins
- Other?

Circ Res 1999

1111 shear

hyperpolarization

BLOOD FLOW

个 reactivity of VSMC layer

JACC 2002

↑ ↑ Nitric oxide bioavailability and/or ↑ ↑ oxidation into peroxynitrite

Circulation 1995 Circ Res. 2004 Shock 2010

eNOS gene

transcription

eNOS1

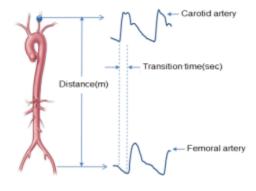
 $\uparrow \uparrow FMD$

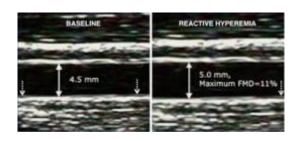
Autonomic dysfunction sympathetic denervation

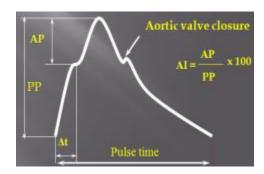
Am J Physiol Heart Circ Physiol 2006 Clin Cardiol. 2000

Increased conduit arterial reactivity in AL amyloidosis

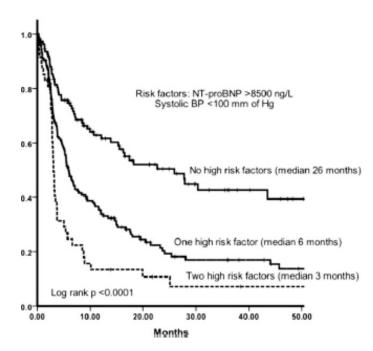
HYPOTENSION?



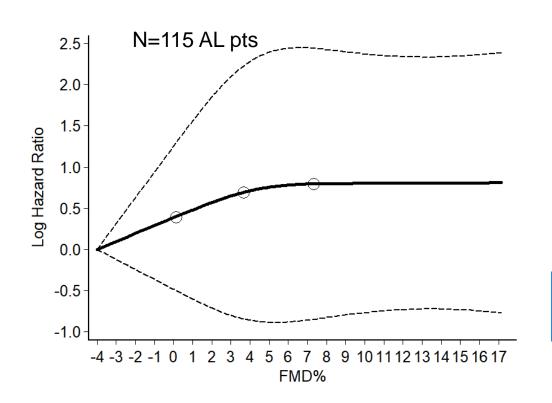



What is the prognostic clinical significance of vascular involvement in AL amyloidosis?

- Low arterial blood pressure
- Increased FMD
- Decreased arterial wave reflections



Low systolic BP is associated with high mortality in AL amyloidosis

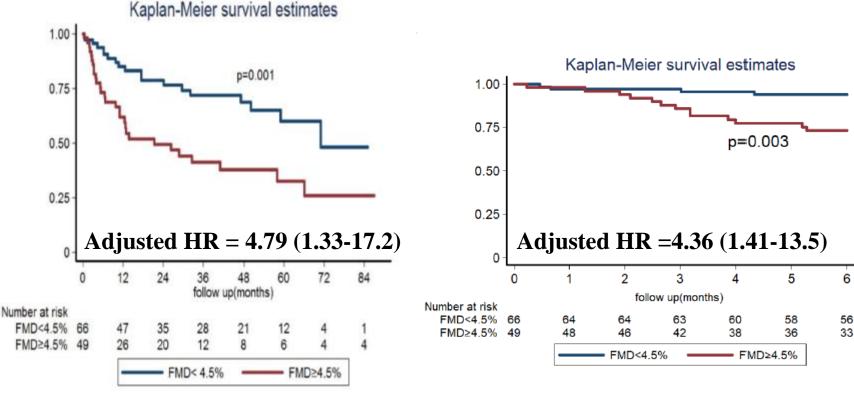


High FMD in AL amyloidosis: Dose-response relationship with mortality

Optimal cutoff at FMD > 4.5%

Low arterial stiffness Low arterial wave reflections

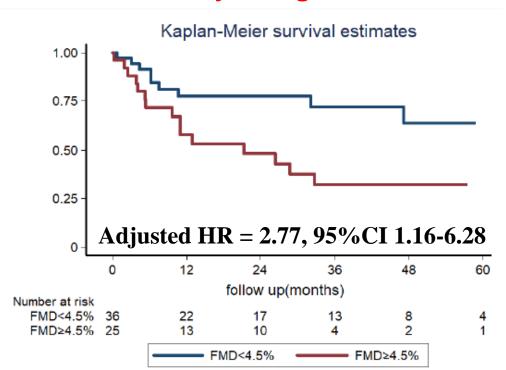
No association with mortality

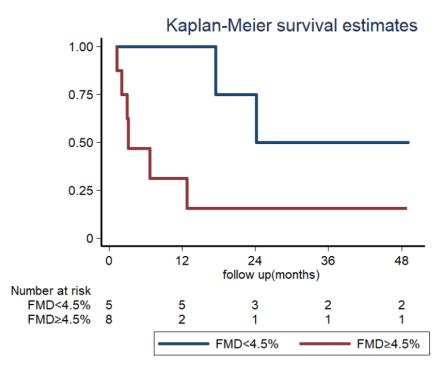


FMD is an independent predictor of all cause mortality in AL patients

All cause mortality across the follow up period

Early all-cause mortality within the first 6 months of the follow up


MV model: age, gender, SBP<100mmHg, vWF, Mayo stage, neurologic involvement, atherosclerosis

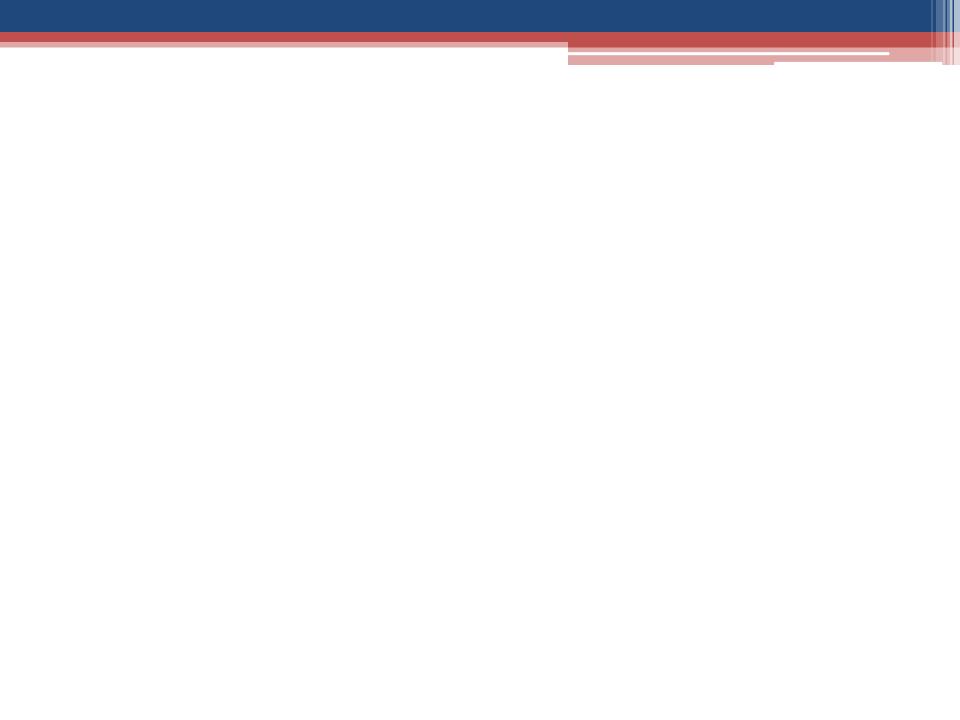


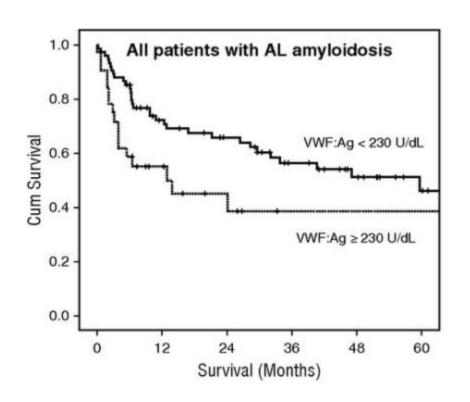
FMD is an independent predictor of all cause mortality in AL patients with cardiac involvement

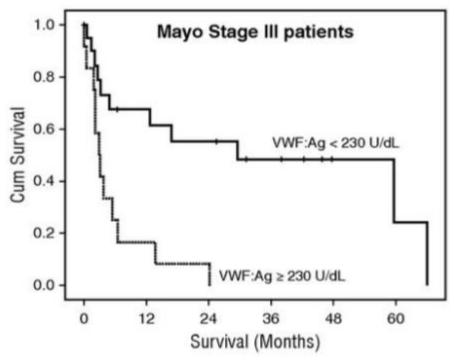
Mayo Stage II

Mayo Stage IIIB

MV model: age, gender, SBP<100mmHg



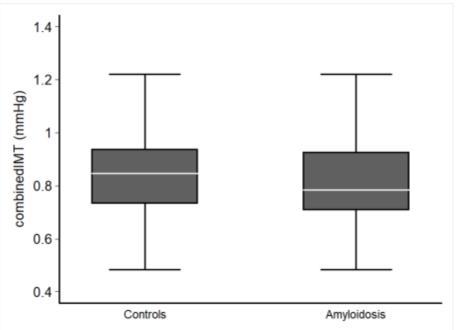

FMD correctly reclassifies risk in AL amyloidosis over Mayo stage, low SBP and neurological involvement


Table 2. Reclassification value of FMD over the best predictive model for early and overall all-cause mortality in 115 AL patients

		Co	ntinuous NRI]	IDI
	Subjects correctly reclassified	Subjects incorrectly reclassified	Net reclassification gain	Overall NRI	P- alu e	IDI (SE)	P-value
	(%)	(%)	(%)	(SE)			
		All-cause	mortality at the end	the follow-up			
Events	29	19	20.8%	61.1%			
(n=48)	(60.4%)	(39.6%)	20.070	01.1 / 0		3.6	
Non	47	20		(18.9)	0.001	(1.8)	0.044
events (n=67)	(70.1%)	(29.8%)	40.3%	*[23.1%-99.2%]		` ,	
]	Early mortality at 6-n	onths			
Events	13	4	52.9%	57.9%			
(n=17)	(76.4%)	(23.5%)	32.970	31.570		6.5	
Non	51.5	46.5		(29.0)	0.045	(3.0)	0.031
events (n=98)	(52.5%)	(47.5%)	5.0%	*[9.5%-106%]		` ,	

High VWF levels predict mortality in AL patients with cardiac involvement and Mayo stage IIIB

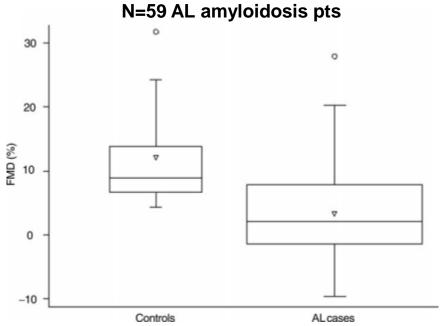
Subclinical atherosclerosis in AL amyloidosis

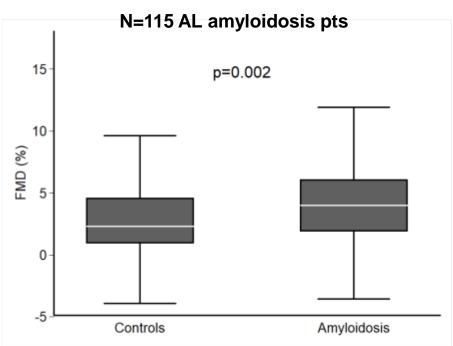

No adjustment for traditional risk factors and GFR

N=59 AL amyloidosis pts

Adjustment for traditional risk factors and GFR

N=115 AL amyloidosis pts





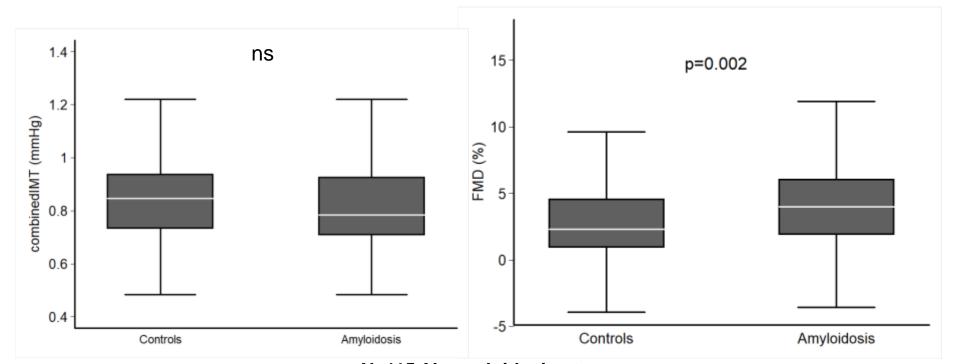
Increased vascular reactivity in AL amyloidosis

No adjustment for traditional risk factors and GFR

Adjustment for traditional risk factors and GFR

Modesto KM et al. Eur Heart J 2007

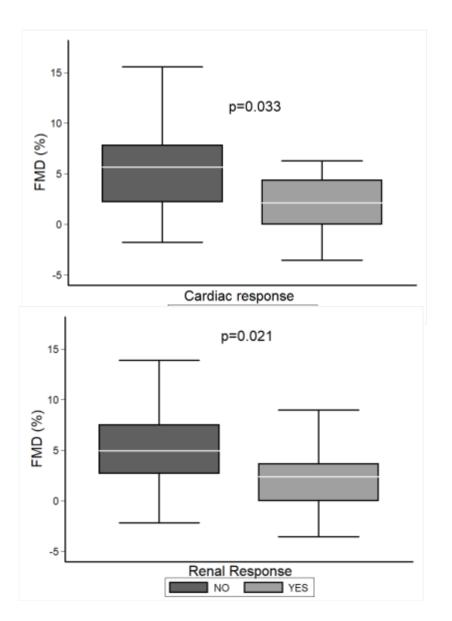
Submitted data


Increased vascular reactivity in AL amyloidosis

Adjustment for traditional risk factors and GFR

Subclinical carotid atherosclerosis

Flow mediated vasodilatation



N=115 AL amyloidosis pts

Increased VWF levels are independently associated with a higher risk of death

Table 2. Multivariate analysis for survival in 111 patients with AL amyloidosis

			95% CI for HR		
	P value	HR	Lower	Upper	
VWF ≥230.0 U/dL	.011	2.173	1.193	3.957	
SBP <100 mm Hg	.009	2.278	1.227	4.232	
Mayo stage I		1			
Mayo stage II	.001	7.833	2.259	27.166	
Mayo stage III	<.001	15.078	4.247	53.533	

Lower FMD is associated with better organ response

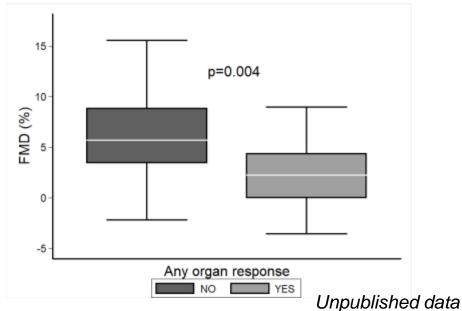
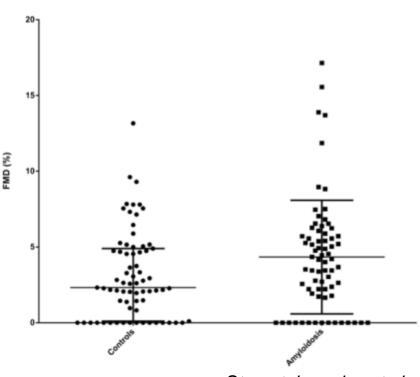
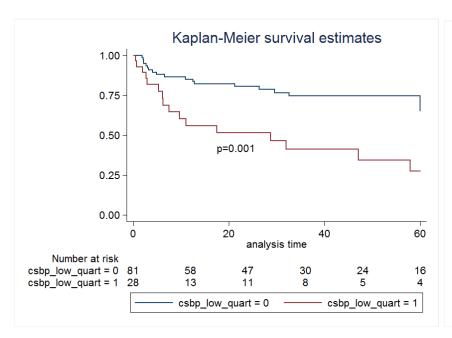


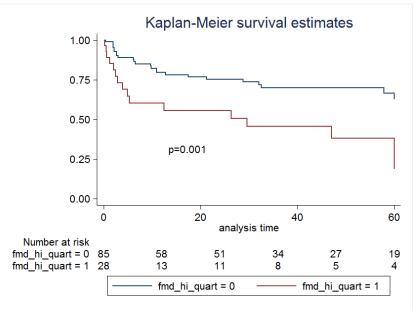
Table 1. Descriptive characteristics of the overall amyloidosis population and the matched amyloidosis and control groups.


Parameters	Amyloidosis	Amyloidosis	Controls	P value
	overall population (n=125)	(n=93)	(n=93)	
Age (years)	64.7±10.0	64.73±9.56	63.4±9.73	0.145
Gender (male)	69 (55.2%)	53 (57%)	53 (57%)	0.999
Diabetes n(%)	16 (12.8%)	14 (15.1%)	20 (21.5%)	0.146
Hyperlipidemia n(%)	53 (42.4%)	43(46.2%)	52(55.9%)	0.078
Smoke n(%)	20 (16.0%)	12(13.2%)	8(8.8%)	0.344
Hypertension n(%)	52 (41.6%)	38(40.9%)	51(54.8%)	0.002
GFR stage				
Stage <2	68 (54.4%)	58 (62.4%)	58 (62.4%)	0.999
Stage 3A	19 (15.2%)	10 (10.8%)	10 (10.8%)	0.999
Stage 3B	14 (11.2%)	10(10.8%)	10(10.8%)	0.999
Stage 4	8 (6.4%)	6 (6.5%)	6 (6.5%)	0.999
Stage 5	16 (12.8%)	9 (9.7%)	9 (9.7%)	0.999
Coronary artery disease	15 (12.0%)	11 (11.8%)	14 (15.1%)	0.508

Vascular reactivity in AL amyloidosis

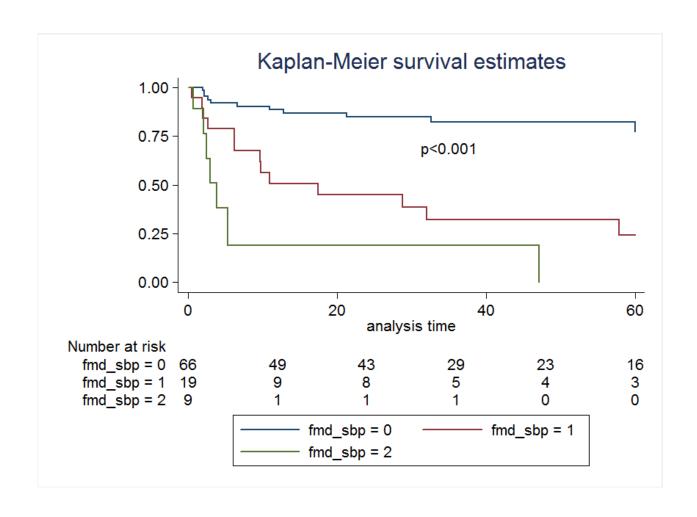
No adjustment for traditional risk factors and GFR


Adjustment for traditional risk factors and GFR



Modesto KM et al. Eur Heart J 2007

Stamatelopoulos et al.


FMD is an independent predictor of mortality in AL amyloidosis

							95,0% CI f	or Exp(B)
	В	SE	Wald	df	Sig.	Exp(B)	Lower	Upper
Mayo_Stage			4,184	2	,123			
Mayo_Stage(1)	1,600	,782	4,182	1	,041	4,954	1,069	22,960
Mayo_Stage(2)	1,389	,815	2,904	1	,088	4,010	,812	19,808
sbp_2	-,031	,012	6,707	1	,010	,970	,948	,993
fmd_4.5	,999	,454	4,828	1	,028	2,715	1,114	6,615
vWF	,002	,002	,946	1	,331	1,002	,998	1,005

Very high early mortality in Pts with BOTH increased FMD and low SBP

Incremental value of FMD as a prognostic factor in patients with AL amyloidosis

Reg	gression paramet	ers	Discrimination		Reclassificat	ion parameter	S			
			Parameters							
					Continuous	NRI			IDI	
HR p-valu (95%CI)		p-value	p-value Harrell's C		Among Event Subjects	Among Non Event Subjects	- Overall (SE)	P-value	Coefficient (SE)	
Primary End	dpoint (All cause	mortality, e	vents n=48)							
FMD	2.57	0.001	0.657							
	(1.44-4.6)	0.001	(0.578-0.737)				61.13%			
Model1+ FMD	2.1	0.018	0.694	0.046	20.84%	30.3%	(18.91)	0.001	*4.6 (2)	
FINID	(1.14-3.87)	0.016	(0.612-0.776)							
Secondary I	Endpoint (Cardia	mortality,	events n=38)							
FMD	2.32(1.22-	0.011	0.715							
	4.43)	0.011	(0.635-0.795)		15.78%	26.32%	42.11%	0.034		
Model1+ 1.71(0.858-	1.71(0.858- 0.127		0.731	0.270						
FMD	3.42)	O.IZF	(0.648- 0.814)							

Η αυξημένη αγγειοδραστικότητα αντικατοπτρίζει στοιχεία αγγειοπάρεσης;

FMD is increased in cirrhotic patients

Abstract

Send to:

<u>Liver Int.</u> 2008 Dec;28(10):1396-401. doi: 10.1111/j.1478-3231.2008.01847.x. Epub 2008 Jul 29.

Increased flow-mediated vasodilation in cirrhotic patients with ascites: relationship with renal resistive index.

Cazzaniga M¹, Salerno F, Visentin S, Cirello I, Donarini C, Cugno M.

Author information

Abstract

BACKGROUND:

Peripheral vasodilation is the key factor in the development of hyperdynamic circulation, sodium retention and functional renal failure in patients with cirrhosis. Brachial artery flow-mediated dilation (FMD) after transient vascular occlusion is a non-invasive method to assess the shear stress-induced arterial vasodilation.

AIMS:

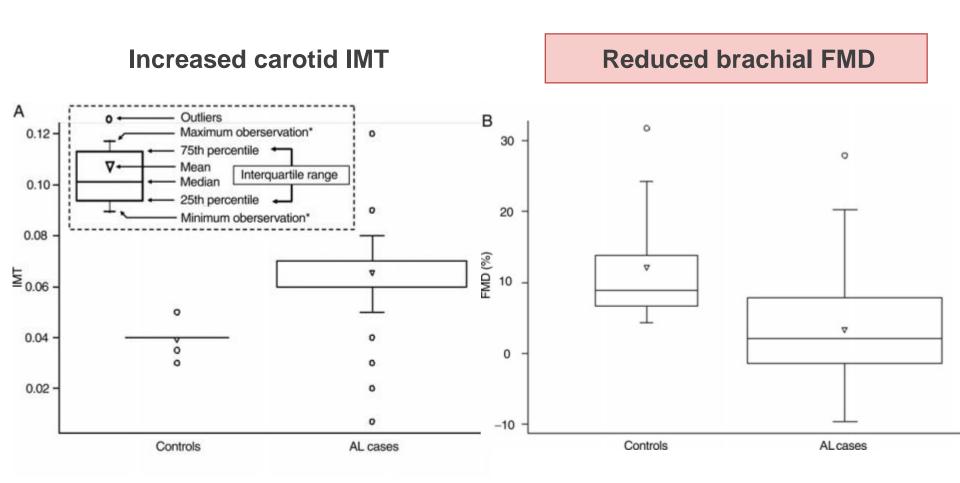
To evaluate FMD in cirrhotic patients with and without ascites and to assess the relationship between FMD and intrarenal resistances.

METHODS:

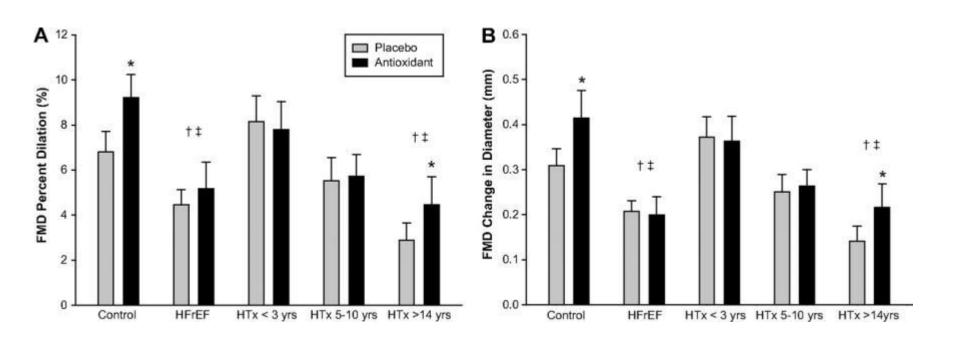
Flow-mediated dilation was determined in 32 cirrhotic patients (22 with ascites) and 12 healthy controls and correlated with the intrarenal resistive index (RI) assessed by Doppler exploration.

RESULTS:

Basal diameter of the brachial artery was similar in healthy controls and in cirrhotic patients, whereas FMD was significantly higher in patients with cirrhosis and ascites [29.5% (range 10.3-50%)] than in pre-ascitic patients [17.3% (range 2.4-48.5%)] and healthy control subjects [11.6% (range 5.1-17.8%)] (P<0.001). Intrarenal RI was significantly higher in patients with cirrhosis than in healthy subjects, and a direct relationship existed between FMD and intrarenal RI (r=0.66; P<0.00001).

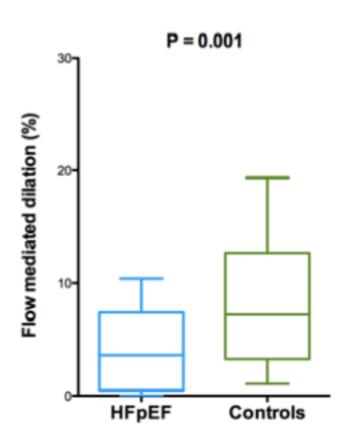

CONCLUSIONS:

These findings in vivo demonstrate that cirrhotic patients with ascites have an enhanced shear stress-induced peripheral vasodilation, which is closely related to intrarenal vasoconstriction.


ΑΜΥΛΟΕΙΔΩΣΗ ΕΛΑΦΡΩΝ ΑΛΥΣΩΝ

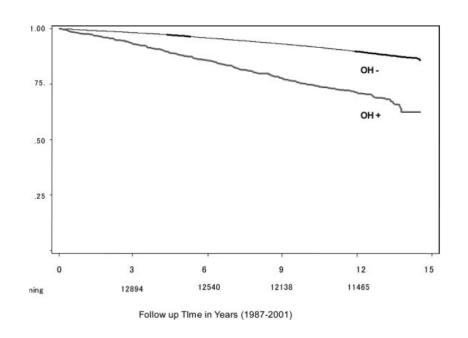
- Η αμυλοείδωση είναι μια συστηματική νόσος οφειλόμενη στην εναπόθεση αδιάλυτων πρωτεϊνικών ινιδίων αμυλοειδούς.
- Τα ινίδια του αμυλοειδούς εναποτίθενται σε ποικίλα όργανα συμπεριλαμβανομένου και του αγγειακού τοιχώματος με συνέπεια πιθανόν τη διαταραχή της αγγειακής λειτουργίας.

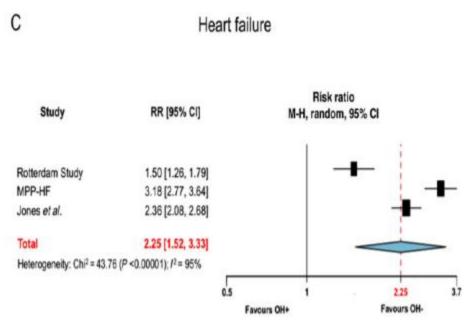
Subclinical atherosclerosis in AL amyloidosis


FMD is decreased in patients with heart failure with reduced ejection fraction

Melissa A.H. Witman et al. Hypertension. 2012;60:659-668

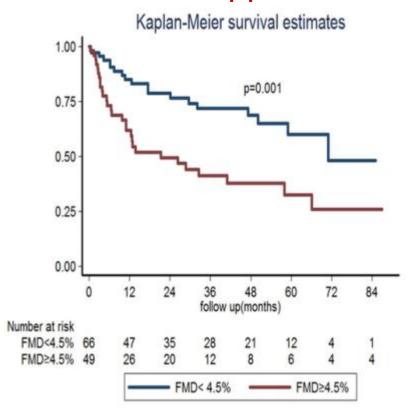
FMD is decreased in patients with heart failure with preserved ejection fraction

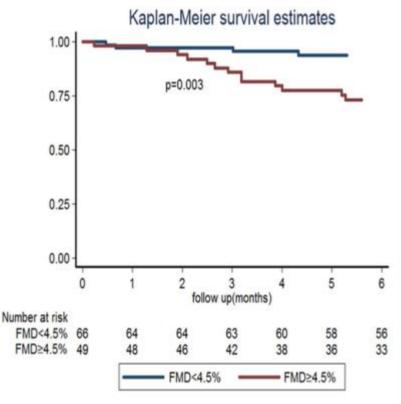



45 HFpEF patients

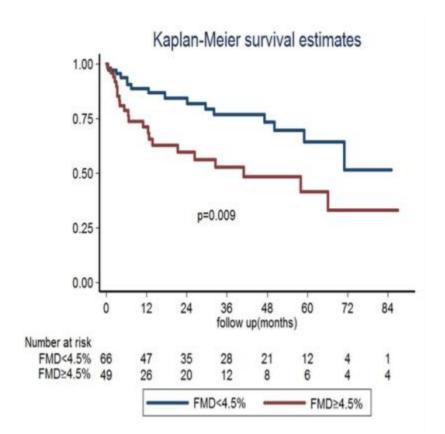
VS

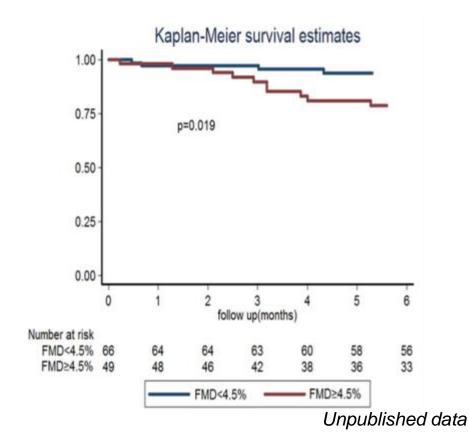
45 hypertensives and no history or evidence of heart failure


Orthostatic hypotension is associated with increased mortality in middle aged general population ARIC study



Higher mortality in patients with increased FMD as compared to those with lower levels


All cause mortality across the follow up period


Early all-cause mortality within the first 6 months of the follow up

Cardiac mortality across the follow up period

Early cardiac mortality within the first 6 months of the follow up

FMD reclassifies risk in amyloidosis over Mayo stage + ROC ?

Improvement in model calibration and reclassification of vascular markers over the best predictive model for Study Main Endpoint

	Regressio paramete			bration uneters			assification	paramet	ers	
				LR test		Continuous N	RI			IDI
	HR (95%CIs) P	-value	AIC	LR chi2 (p-value)	Among Event Subjects	Among Non-Event Subjects	Overall (SE)	P-value	†NRI (SE)	Coeffic ient (SE)
			Primary	Endpoint (All o	ause morta	ality, n=46)	/	•		
FMD	2.39(1.2-4.74)	0.013	273	39.8	•		47.2%		*21%	*4.7
Modell +FMD	2.11(1.02-4.4)	0.045	238	(<0.001)	-20%	67.2%	(20.9)	0.024	(10.5)	(2.35)
C_SBP	0.982(0.965-0.99)	0.045	221	13.8						
±Model2+ C_SBP	0.968(0.947-0.99)	0.005	214	(0.001)	21.22%	10.14%	31.4% (21.2)	0.139	*22.4% (11.3)	*5.7 (2.4)
FMD_SB P	3.39(2.07-5.57)	<0.001	235	39.9			23.224		20.104	
Model2+ FMD_SB P	3.95(2.22-7.01)	<0.001	200	<0.001	43.76%	47.52%	91.3% (21.8)	<0.001	20.1% (9.3)	**19.2 (4.5)

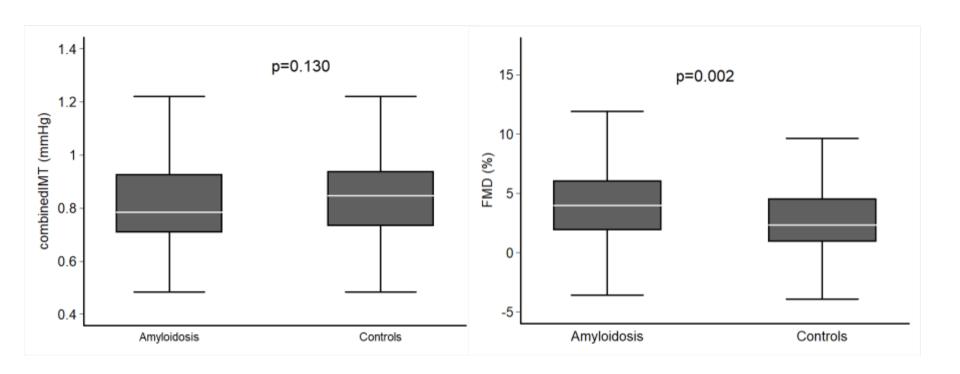
LR test: likelihood-ratio test, LR chi2: twice the difference in log-likelihoods between nested models under chi2 distribution with one degree of freedom

low risk <35%, high risk >35%

NRI: Net Reclassification Index; SE: Standard Error; IDI: integrated discrimination index

Model 1: age, gender, systolic blood pressure, Mayo Stage NC: not performed due to empty cells per category of risk

± Model 2: age, gender, Mayo Stage


FMD: flow mediated dilatation; C_SBP: aortic systolic blood pressure;

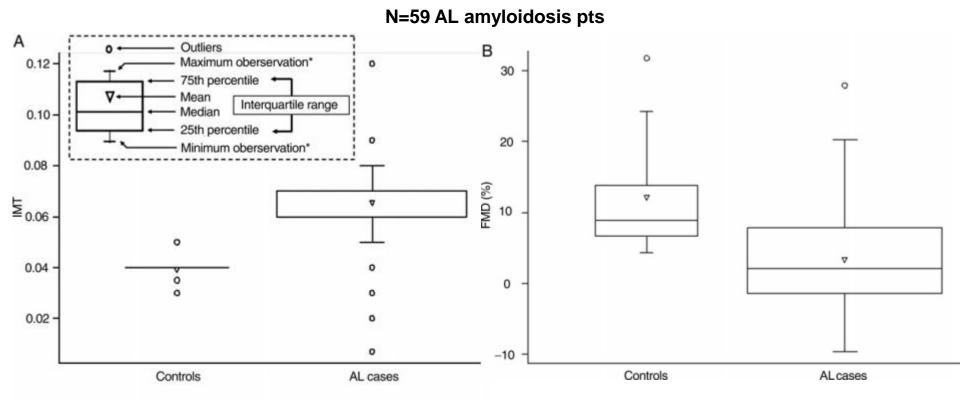

FMD_SBP: a combined ordinal variable encoded as 0: when FMD is distributed in lower quartiles and SBP in highest quartile, 1: when either FMD is distributed in highest quartile or SBP in lowest quartile and 2: when FMD is distributed in highest quartile and SBP in lowest quartile

^{*} indicates level of statistical significance<0.05; ** indicates level of statistical significance<0.001

[†] Category based NRI:

Higher FMD in AL patients as compared to non-AL controls

Unpublished data


Study design

- Study population
- √ n=115 consecutive, newly diagnosed, treatment naïve patients with biopsy-confirmed systemic AL amyloidosis
- Matched with the AL patients for age and gender and GFR control subjects
- Exclusion criteria: Control subjects with autoimmune or chronic inflammatory diseases, cancer, active infection, acute renal failure, acute coronary syndrome, acute stroke and any condition limiting survival to less than 1 year
- Flow-mediated dilatation and carotid and femoral ultrasound

Conduit arteries Subclinical human arterial involvement in AL amyloidosis

Increased carotid IMT

Reduced brachial FMD

High rate of co-morbidities in AL amyloidosis

	Controls ($n = 17$)	NCAL (n = 19)	CAL $(n = 40)$	All AL (n = 59)	Pure AL (<i>n</i> = 37
Clinical characteristics					
Age (years)	61.1 <u>+</u> 7.4	58.2 ± 9.5	57.7 ± 9.4	57.9 ± 9.4	59.3 ± 9.4
Male (%)*	5 (29)	9 (47)	24 (60)	33 (56)	20 (54)
Body surface area (kg/m²)	1.89 ± 0.19	1.85 ± 0.22	1.87 ± 0.25	1.86 ± 0.24	1.84 ± 0.25
Heart rate (b.p.m.)	69 <u>+</u> 8	67 <u>+</u> 12	79 <u>+</u> 15	75 <u>+</u> 15	75 <u>+</u> 15
SBP (mmHg)*	126 <u>+</u> 9	117 <u>+</u> 18	112 ± 18	113 <u>+</u> 18	115 <u>+</u> 17
DBP (mmHg)*	78 ± 5	70 <u>+</u> 14	69 ± 11	69 <u>+</u> 12	69 ± 12
Hypertension	_	0 (0%)	5 (13%)	5 (8%)	-
Coronary artery disease	_	0 (0%)	5 (13%)	5 (9%)	-
Diabetes mellitus	_	1 (5%)	2 (5%)	3 (5%)	-
Renal failure	_	4 (21%)	9 (23%)	13 (22%)	
ACE inhibitor/ARB II	_	4 (21%)	5 (13%)	9 (15%)	6 (16%)
Calcium channel blockers		1 (5%)	2 (5%)	2 (5%)	2 (5%)
β-blockers 40 0	% Cr >1.6 mg/	dl 70% ra	nal invol	vement	3 (8%)
210100				Verrient	20 (54%)
Statins VS.	none in the co	ontrol aro	up		7 (19%)
Nitroglycerin		J. G. G. G. G	<u></u> Р		1 (3%)
aboratory values					
Aspartate amino transferase (mg/	*	27 <u>+</u> 11	35 ± 25	33 ± 22	33 ± 23
Serum creatinine (mg/dL)	1.04 ± 0.23	1.31 ± 0.64	1.69 ± 1.51	1.57 ± 1.30	1.29 ± 0.65

FMD is severely decreased in renal failure

Variable	Controls (1) $n = 22$	ESRD-CVD $^-$ (2) $n = 18$	ESRD-CVD $^+$ (3) $n = 17$	P-ANOVA
Age (years)	50.1 ± 15.6	48.2 ± 10.5	63.5 ± 10.6	<0.01 ^a
Gender (male/female)	13/9	11/7	11/6	0.44
Body mass index (kg/m ²)	24.5 ± 2.9	24.6 ± 4.4	25.9 ± 3.6	0.22
Systolic blood pressure (mmHg)	126 ± 17.5	136 ± 19.5	155 ± 23.8	$< 0.001^{a}$
Diastolic blood pressure (mmHg)	77 ± 11.1	75.5 ± 12.6	74 ± 9.2	0.78
Mean blood pressure (mmHg)	93 ± 11.2	96 ± 14.2	101 ± 11.4	0.21
Pulse pressure (mmHg)	49 ± 17	61 ± 12.3	80 ± 23	<0.001 ^a
BA intima-media thickness (μm)	427 ± 60	450 ± 55	479 ± 50	$< 0.05^{\rm e}$
Baseline BA diameter (mm)	4.10 ± 0.65	4.40 ± 0.70	4.90 ± 0.95	<0.01 ^d
Baseline BA Einc (kPa x 10 ³)	3.06 ± 1.15	3.95 ± 2.1	6.28 ± 3.15	$< 0.001^{a}$
Baseline BA blood velocity (cm/s)	4.15 ± 1.9	3.95 ± 1.85	2.35 ± 1.9	$< 0.01^{a}$
Baseline BA blood flow (ml/s)	35.0 ± 23	36.0 ± 20.1	22.8 ± 17	$< 0.05^{a}$
Baseline BA shear rate (s ⁻¹)	49 ± 11.4	45.5 ± 21.1	35.4 ± 20.1	<0.01 ^a
Whole blood viscosity (cPoise)	3.58 ± 0.36	2.70 ± 0.35^{b}	2.78 ± 0.34	$< 0.001^{b;c}$
Baseline BA shear stress (dynes/cm ²)	17.6 ± 4.7	12.6 ± 5.8	8.3 ± 6.2	$< 0.001^{a}$
ΔBA diameter (% from baseline at 44°C)	7.5 ± 3.62	$4.7 \pm 2.72^{\rm f}$	1.5 ± 1.65	<0.001a;f
Δ Shear stress (% from baseline at 44°C)	234 ± 125	289 ± 169	395 ± 295	< 0.05
FMD (ΔBA diameter/Δshear stress)	3.6 ± 1.7	1.85 ± 1.2^{6}	1.05 ± 0.85	<0.001 ^{a;b}
GTN-induced dilation (GTN %)	20.7 ± 5.65	19.0 ± 4.3	11.20 ± 4.6	<0.001 ^a
GTN/FMD (ratio)	3.50 ± 2.9	5.7 ± 2.8	8.1 ± 4.1	$< 0.05^{c}$

Characteristics of the AL amyloidosis population and of the age and gender-matched population and similar GFR

Parameters	AL (n=115)	Matched (n=115)	P value
Age (years)	64.4±10.2	64.3±10.1	0.938
Gender (male), n (%)	62 (53.9%)	62 (53.9%)	0.999
Diabetes n (%)	14 (12.2%)	21 (18.3%)	0.189
Hyperlipidemia n (%)	50 (43.5%)	69 (60.0%)	0.009
Smoking n (%)	18 (15.7%)	23 (20.0%)	0.371
Hypertension, n (%) ^a	45 (39.1%)	68 (59.1%)	0.002
GFR stage			0.288
Stage 1	36 (31.3%)	26 (22.6%)	
Stage 2	27 (23.5%)	33 (28.7%)	
Stage 3A	18 (15.7%)	15 (13.0%)	
Stage 3B	13 (11.3%)	5 (4.35%)	
Stage 4	8 (6.96%)	6 (5.22%)	
Stage 5	13 (11.3%)	6 (5.22%)	
History of Coronary artery disease n (%)	12 (10.4%)	14 (12.2%)	0.659

Increased vascular reactivity in AL amyloidosis

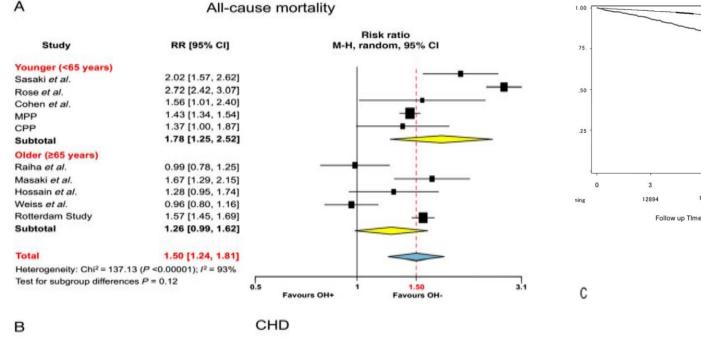
Autonomic dysfunction sympathetic denervation

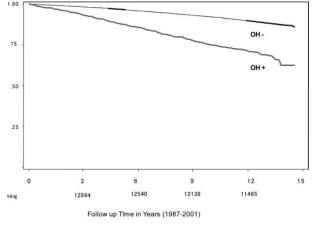
Am J Physiol Heart Circ Physiol 2006 Clin Cardiol. 2000

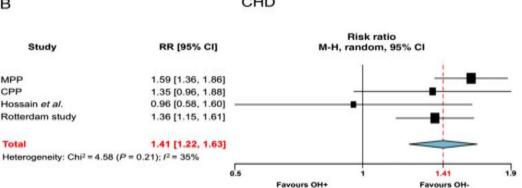
个个 Nitric oxide bioavailability and/or 个个 oxidation into peroxynitrite

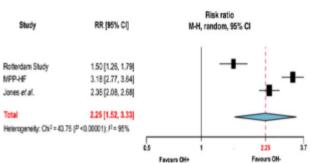
Circulation 1995 Circ Res. 2004 Shock 2010

个个 non-NO vasodilator bioavailability


- Hyperpolarizing factor
- Prostaglandins
- Other


Circ Res 1999


↑ reactivity of VSMC layer


JACC 2002

Orthostatic hypotension is associated with increased mortality in middle aged general population ARIC study

Heart failure